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Abstract—We introduce a novel approach for detecting
and predicting terminal voltage collapses in Li-ion batteries
without having complete knowledge of a battery model. We
present a simplified dynamic model for a Li-ion battery that
is forced to track the output voltage curve of a physical Li-
ion battery by using universal adaptive stabilization (UAS). We
prove that when the physical Li-ion battery becomes unstable,
then the simplified dynamic model becomes unstable. Our
results do not require a sophisticated model for a battery that
faithfully captures all dynamics. Using our results, we present
an algorithm for detecting impending voltage collapses for Li-
ion batteries.

I. INTRODUCTION

Low self-discharge rate, no memory effect and high energy

density are some of the characteristics [1] that make Li-ion

batteries viable as power sources for various applications.

This has motivated some recent work related to batteries [2]–

[4]. The terminal voltage of a battery drops sharply from its

operating value when it is in a low state of charge (SoC).

Systems like autonomous vehicles can have multiple batteries

on board. If it is detected that the terminal voltage of a

particular battery is about to collapse, appropriate actions

can be taken to switch to a backup battery.

The terminal voltage, available capacity, state of charge

(SoC) and state of health (SoH) [5]–[8] can determine if the

terminal voltage of a battery is going to collapse. Usually

a constant threshold voltage is used to determine that a

particular battery is discharged [6], [7]. The terminal voltage

of a battery depends on the discharge current it supplies. So

using a constant voltage threshold can lead to false alarms

in the presence of noise or large spikes in the discharge

current. Another strategy is to use a threshold on the battery

state of charge (SoC). This strategy is affected by load

demand, number of charge-discharge cycles and temperature.

Determining the SoC involves coulomb counting, which

introduces errors as the measured input current is integrated

in the presence of measurement errors [6].

Incorporating battery models improves the accuracy of de-

tecting an impending terminal voltage collapse. Various types

of battery models and associated identification techniques

exist [8]–[14]. Dynamic battery models along with adaptive

thresholds [15] can overcome some problems with constant

thresholds. Filtering algorithms [16] for state estimation and

fault detection strategies like residual generation [17] can
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also be used. All the above methods require detailed battery

models. Substantial time and effort [8] is required to obtain

such models. Also in reality battery characteristics may differ

from the model used; resulting in voltage collapse before

a particular algorithm detects it. Existing results are either

dependent on a particular testing methodology or on a type

of model [6]–[8], [16], [17]. Our work aims to reduce such

dependence without sacrificing the ability to detect voltage

collapses.

The contributions of this paper are as follows. We present a

general method for detecting Li-ion battery voltage collapses

without the requirement of a detailed model. Our method

only requires the measurement of the terminal voltage of

a battery and works in the presence of measurement noise

or voltage spikes due to non-smooth current discharges.

We do not measure the discharge current and do not use

coulomb counting techniques. Thus the cost of accurate

current measurement and associated errors are eliminated.

We do not estimate the SoC of a battery and do not need a

static threshold on the SoC or terminal voltage, hence our

method is robust to variations in the SoC and the terminal

voltage.

Our method is motivated by the following observation. The

terminal voltage curve vs. time for any battery is linear for

most of its usable life in a charge-discharge cycle. Towards

the end of its life (i.e. low SoC), the terminal voltage starts

declining. When the SoC is low the decline is slow (but

not linear) initially. Further decrease in SoC causes near

instantaneous decline. Our method aims at detecting the

initial slow decline of terminal voltage when the SoC is

low. To achieve our goal we construct a simplified dynamic

model mimicking the behavior of a Li-ion battery and force

it to track the output of a physical battery using UAS [18],

[19]. From the states of our simplified model we can decide

if the terminal voltage of the physical battery has entered

the region of slow, nonlinear decline. In the remainder of

the paper, we first present some background information on

battery models and UAS. Then we present our results and

an algorithm to detect terminal voltage collapses for Li-ion

batteries and some simulations.

II. BACKGROUND

A. Chen and Mora’s (CM) battery model

Figure 1 is an equivalent circuit representation of a Li-

ion battery [9] showing two coupled circuits. The left half

models the variation of the state of charge (SoC) x1 and

the right half models the variation of battery output voltage

y as a function of the charge/discharge current i(t). All the
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Fig. 1. Chen and Mora’s battery model

circuit components Cts, Ctl, Rs, Rts, Rtl, Eo are functions of

x1 represented as follows:

Cts = −k4e
−k1x1 + k3 (1)

Ctl = −k6e
−k2x1 + k5 (2)

Rs = k7e
−k8x1 + k9 (3)

Rts = k10e
−k11x1 + k12 (4)

Rtl = k13e
−k14x1 + k15 (5)

Eo = −k16e
−k17x1 + k18 + k19x1 (6)

− k20x1
2 + k21x1

3

Cc = 3600Cf1f2. (7)

where ki > 0 for i = 1, 2, ..., 21 and k1 < k2 < k3 <

k4 < k5 < k6. In eqn. (7) f1, f2 ∈ [0, 1] are factors taking

into account the effects of temperature and charge-discharge

cycles respectively. By default, f1 = f2 = 1, but their values
will decrease after each charge-discharge cycle. Eo is the

open-circuit voltage of the battery. In general it can be said

that Eo : [0, 1] → [Ω1,Ω2] where Ω1,Ω2 ∈ R and Ω2 >

Ω1 > 0. The various resistances, capacitances, and constants

(k1, · · · , k21) shown here are independent of i(t).
Knauff et.al. [12] provide the following state space real-

ization of the battery model.

ẋ1 = −
1

Cc

i (8)

ẋ2 = −
x2

RtsCts

+
i

Cts

(9)

ẋ3 = −
x3

RtlCtl

+
i

Ctl

(10)

y = Eo − x2 − x3 − iRs, (11)

where y represents the voltage output from the battery, x2

represents the voltage drop across Rts||Cts and x3 represents

the voltage drop across Rtl||Ctl. x1 ∈ [0, 1], x2, x3 ∈ R
+

with initial conditions x0 = [1, 0, 0]
T
.

B. Universal adaptive stabilization (UAS)

The details concerning UAS can be found in [18]. We use

UAS with a particular class of switching functions known

as Nussbaum functions [18]. It is shown in [20] and [21]

that Eα(−λtα) is a Nussbaum function for λ > 0 and α ∈
(2, 3] where Eα(z) is the Mittag-Leffler (ML) function in

one parameter given by

Eα(z) =
∞∑

k=0

zk

Γ(kα+ 1)
, (12)

Figure 2 shows what the Nussbaum function with Mittag-

Leffler form looks like. It produces growing oscillations over

time. We use a Nussbaum function with ML form in this

paper.
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Fig. 2. The Mittag-Leffler (ML) function as a Nussbaum function

III. CONFIGURATION FOR DETECTING BATTERY

TERMINAL VOLTAGE COLLAPSES USING UAS

The CM model shown in section II-A is fairly accurate

compared to experimental data. The process of obtaining

eqns. (1)-(7) takes considerable experimental effort [8], [9],

[13], [14] and the various constants k1-k21 may be different

for each individual Li-ion battery. We propose the following

simplified model having characteristics similar to the CM

model.

˙̂ρ = −
1

Ĉc

u (13)

˙̂x1 = −c1x̂1 +
c3

ρ̂
+ u, c1 > 0, c3 = 1 (14)

˙̂x2 = −c2x̂2 +
c4

ρ̂
+ u, c2 > 0, c4 = 1 (15)

ŷ = ŷ0 +mρ̂− x̂1 − x̂2 (16)

where ρ̂ ∈ [0, 1], u, ŷ ∈ [ŷ0, 0] represent the SoC, discharge

current and the output terminal voltage for this model. Ĉc

represents the Ampere-hour (Ah) capacity of the simplified

battery model. Ĉc should equal the Ah capacity of the battery

we plan to model using eqns. (13)-(16). States x̂1, x̂2 ∈ R

represent transient voltages. Let ρ̂0 = 1, x̂0 = [0, 0]
T
,

ŷ = ŷ0 be the initial values for the SoC, the states and the

output respectively. The terminal voltage for a new battery

on no load is represented by ŷ0. The term ŷ0 +mρ̂, m > 0
decreases linearly with ρ̂ mimicking the linear decline of

battery terminal voltage. Assuming that u is bounded, ˙̂x1 and
˙̂x2 tend to infinity as ρ̂ → 0. This causes x̂1 and x̂2 to tend

to infinity as ρ̂ → 0, thus causing the output voltage ŷ → 0.
This mimics the drop in terminal voltage as the SoC of a

battery goes to zero. From eqn. (16) we observe that if the

output ŷ is forced to follow the output y of a physical battery

(sufficiently close) and y decreases suddenly then the states

x̂1 and x̂2 must increase. We thus hypothesize that the actual

Li-ion battery is unstable when the simplified battery model
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Fig. 3. Battery output voltage tracking with UAS

is unstable and if this instability can be detected then the

terminal voltage collapse of a Li-ion battery can be detected.

Figure 3 shows the setup we propose to detect the terminal

voltage collapse of a Li-ion battery, it consists of three main

blocks. The first block to the left represents the real Li-ion

battery (which we assume is modeled sufficiently accurately

using the CM model). The block in the middle represents

the universal adaptive stabilizer. The block shown using a

dotted rectangle is the simplified system formed by adding

feedforward inputs to the simplified model shown in eqns.

(14)-(16). The simplified system is obtained as,

˙̂x1 = −c1x̂1 + u, c1 > 0 (17)

˙̂x2 = −c2x̂2 + u, c2 > 0 (18)

ỹ = −x̂1 − x̂2. (19)

IV. TERMINAL VOLTAGE COLLAPSE DETECTION

ALGORITHM

In this section we analyze the closed loop dynamics of

the system shown in fig. 3. Finally we provide an algorithm

to detect terminal voltage collapses for Li-ion batteries and

theoretically justify the result.

A. Closed loop dynamics

The closed loop shown in fig. 3 consists of the simplified

system connected to the universal adaptive stabilizer via the

following feedback law.

u(t) = −N(k(t))e(t)

N(k(t)) = Eα (−λk(t)α) , λ > 0, α ∈ (2, 3)

k̇(t) = e2(t)

e(t) = ỹ(t)− y(t)





(20)

We will now show that the above law will drive the error

e(t) to zero as time goes to infinity.

Lemma 4.1: Let y be the output of a real battery described

by the CM model. Let u, ỹ be the input to, and output from

the simplified system in (17)-(19) respectively. Let d(t) =

(c2 − c1)x̂2 − c1y(t)− ẏ(t). Assuming
(∫

∞

0
|d(t)|

p
dt
) 1

p <

∞, if the feedback law u(t) = −N(k(t))e(t), k̇(t) =
e2(t) is used with the closed loop system in Fig. 3 then

limt→∞ k(t) = k∞ and limt→∞ e(t) = 0, where k∞ is

finite.

Proof: From equations (17)-(19) and (20) we have

ė(t) = c1x̂1 + c2x̂2 − 2u− ẏ(t). (21)

Adding and subtracting c1x̂2, c1y(t) to the R.H.S. and re-

arranging we get

ė(t) = −c1e(t)− 2u+ (c2 − c1)x̂2 − c1y(t)− ẏ(t). (22)

By definition d(t) = (c2−c1)x̂2−c1y(t)− ẏ(t). Temporarily

disregarding the term d(t) in (22) and considering the output

equation ye = e(t) we get the following system in the error

e(t).
ė(t) = −c1e(t)− 2u

ye = e(t)

}
(23)

The system in (23), with transfer function G(s) =
−2(s+ c1)

−1
has a minimal representation and is minimum

phase. Also for (23), let A = −c1, B = −2 and C = 1,
so σ(CB) = −2. Hence by [18, Theorem 4.2.1] we have;

limt→∞ k(t) = k∞ and limt→∞ e(t) = 0. Now we can

write eqn. (22) as the system in (23) with some nonlinear

perturbations as follows,

ė(t) = −c1e(t)− 2u+ d(t)

ye = e(t)

}
(24)

From our assumptions
(∫

∞

0
|d(t)|

p
dt
) 1

p < ∞, hence d

belongs to the space Lp(0,∞). By [18, Theorem 6.1.6] we

have that limt→∞ k(t) = k∞ and limt→∞ e(t) = 0. Hence
the proof.

Lemma 4.1 allows our simplified system to track the output

y of a physical battery as long as the assumptions are met.

B. Battery voltage collapse detection

Here we formulate a result that allows us to detect terminal

voltage collapses for Li-ion batteries by monitoring the states

x̂1, x̂2. First we propose the following algorithm.

Algorithm 1: Determine Battery Switching Instant

Data: x̂j , x̂jmin
, ε, j, r, γ, t, ǫ, e

Result: S = [0, 1]

1 q = x̂j − x̂jmin
+ ε;

2 p = 1
q
;

3 pmax = max(pτ∈[t−r,t]);
4 if (|e| ≤ ǫ) then
5 if (ṗ(t) < 0)&&(γp(t) ≥ pmax) then
6 S = 1;

7 else

8 S = 0;

9 return S;

S is an indicator variable in algorithm 1. S = 1 indicates

that the terminal voltage of the Li-ion battery is about to

collapse soon. We let q = x̂j − x̂jmin
+ ε, p = 1

q
, and

j = 1 or 2. Algorithm 1 monitors the sign of the time

derivative of p at time t. When the time derivative of p is

negative at t and γp(t) ≥ pmax, then we will prove that

x̂j goes to infinity over time. Here γ > 1 and pmax is

the maximum value of p in a time window with length r
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prior to t. The condition |e| ≤ ǫ is a guarding condition

to ensure that the output of the simplified model ŷ is close

enough to the output of the real Li-ion battery y. This guard

condition ensures that our algorithm is not affected by initial

transients in the control effort u due to the UAS strategy and

ensures that output ỹ is sufficiently close to y . Inspired by

the Razumikhin theorem [22] and its use in [23], [24] we

now develop the following result which provides a sufficient

condition for detecting terminal voltage collapses for Li-ion

batteries.

Theorem 4.2: Assume that the conditions required for

Lemma 4.1 to hold are satisfied. Let the discharge current i

be bounded, γ > 1, q = x̂j−x̂jmin
+ε and p = 1

q
where j =

1 or 2, x̂jmin
= min (x̂j) and ε is an infinitesimally small

positive constant. Let pmax = maxτ∈[t−r,t] p(τ), 0 < r < t.

If ṗ(t) ≤ 0 whenever γp(t) ≥ pmax then the physical Li-ion

battery is unstable.

Proof: We will prove that the physical Li-ion battery is

unstable by contradiction. Let pmax = maxτ∈[t−r,t] p(τ) and
suppose ṗ(t) ≤ 0 whenever γp(t) ≥ pmax but the physical

Li-ion battery is stable. Now according to the Razumikhin

theorem [25], if ṗ(t) < 0 whenever γp(t) ≥ pmax then p(t)
converges to zero as t → ∞. Since p converges to zero we

have q → ∞ with time. But q = x̂j − x̂jmin
+ε and x̂jmin

, ε

are constants. This means that x̂j → ∞ as t → ∞. Since

x̂j,j=1 or 2 tends to infinity as t → ∞ we know that either

x̂1 or x̂2 goes to infinity as t → ∞. Now from (19) we have

ỹ(t) → −∞ as t → ∞. But from our assumptions we have

that lemma 4.1 holds, i.e. as time tends to infinity, the error

e(t) = ỹ(t) − y(t) → 0. Hence we have |y(t)| → ∞ as

t → ∞. Further from equation (11) we have

|y(t)| ≤ |E0|+ |−(x2 + x3 + iRs)|

|y(t)| ≤ |E0|+ |x2|+ |x3|+ |i| |Rs| (25)

But as per our assumption the physical Li-ion battery de-

scribed by (8)-(11) is stable. Hence the states x2, x3 are

bounded for all time. Also the discharge current i is bounded

by assumption and E0, Rs are bounded by definition. Hence

we can say that there exists a real number M such that for

all time t,

|y(t)| ≤ |E0|+ |x2|+ |x3|+ |i| |Rs| ≤ M. (26)

This is a contradiction, as above we have established that

|y(t)| → ∞ as t → ∞. This means our assumption that

the physical Li-ion battery is stable, is wrong. Thus by

contradiction we have the desired result. This completes the

proof.

The above result shows that if x̂j,j=1 or 2 diverges to infinity

then the terminal voltage of a Li-ion battery is about to

collapse. Thus we have theoretically proven that algorithm 1

can be used to detect that the terminal voltage of a physical

battery is about to collapse by monitoring the states x̂1 or

x̂2 of the simplified system. Also note that in any real life

scenario the discharge current (even in case of a short circuit)

is bounded, hence we do not measure it to check it explicitly

in our algorithm.
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Fig. 4. Terminal voltage vs. SoC for a battery for different discharges.
Dashed lines indicate static thresholds.

V. SIMULATION

A. Threshold based detection

First we demonstrate the pitfalls of using simple thresholds

to detect an impending terminal voltage collapse. Figure 4

shows the terminal voltage curve vs. SoC for a battery under

different discharge currents. The horizontal black dashed line

in Fig. 4 represents a terminal voltage threshold of 3.5V. It

detects correctly that the terminal voltage is about to collapse

when the load current i = 0.5A, 1A. But when i = 2A using

this threshold results in an incorrect detection as the battery

still has a SoC = 50%. Also spikes may appear in the voltage

due to sudden large current discharges. This may cause an

incorrect detection.

Let us consider preset thresholds on SoC. The vertical

black dashed line in Fig. 4 represents a SoC threshold of

10%. For a load of i = 0.5A the battery terminal voltage

is above the previously used voltage threshold of 3.5V but

using the SoC threshold would remove this battery from

service earlier than necessary. Before we show how using

our method would help in this situation we present some

more simulation results.

B. Comparison of models

The upper half of fig. 5 shows terminal voltage curves

obtained using the CM model in eqns. (8)-(11) and the

simplified model in eqns. (13)-(16). Both models are subject

to a square wave discharge at 0.25 Hz, 1A (peak to peak)

with a DC offset of 3A. We assume a battery capacity of

100 mAh. The values 2.5, 2, 1, 1, 0.5, 4.5 are used for the

constants c1, c2, c3, c4,m and y0 respectively. Parameters for

the CM model can be found in [9]. It is seen from fig.

5 that the voltage curves do not match. The lower half of

fig. 5 shows the output of the simplified model in (13)-(16)

matches the output of the battery modeled using the CM

model, when the loop is closed as in (20) using the setup

shown in fig. 3. We do not know the values of c1, c2 we

must pick for the simplified battery model in (13)-(16), but
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Fig. 5. Comparison of models, performance with and without UAS

we have achieved the desired tracking performance as shown

in the lower half of fig. 5. Hence our method works without

complete knowledge of the system model.

C. Detecting terminal voltage collapse using algorithm 1

For all the following simulations we use a 100mAh battery,

the values of c1, c2, c3, c4,m and y0 are the same as used in

the previous section and the discharge current always has a

magnitude of 1A (peak to peak) with a DC offset of 3A.

The output y is produced by running a simulation using

the CM model. Figure 6, shows the results of detecting

terminal voltage collapse using algorithm 1 for the square

wave discharge at 0.25 Hz. The voltage curve for this run is

shown in the lower half of fig. 5. The upper half of fig. 6

shows that x̂1 rises as the terminal voltage is about to drop.

This is detected at time t = 110s when the indicator variable

S in algorithm 1 goes from a zero to a one. At t = 110s
it is seen from the lower half of fig. 5 that the terminal

voltage is just below 3V and is beginning to drop quickly.

The values 1.001, 285, 2 × 10−3 are used for the variables

γ, r, ǫ in algorithm 1 respectively. Note that all window sizes

(r) reported here are in terms of number of samples.

Figure 7 shows the results for a sine wave discharge at

0.5 Hz. Algorithm 1 detects an impending voltage collapse

at t = 116s when S = 1. At this time the terminal voltage is

around 2.5V and is seen to be dropping quickly and a sharp

rise is seen in the state x̂1. The values 1.001, 285, 4× 10−2

are used for the variables γ, r, ǫ.

Figure 8 shows the results for a square wave discharge at

0.25 Hz in the presence of Gaussian noise with a covariance

of 0.2. Algorithm 1 detects an impending voltage collapse at

t = 100s when S = 1. At this time the terminal voltage is

around 3.2V and is seen to be dropping quickly and a sharp

rise is seen in the state x̂1. The values 1.001, 277, 2× 10−3

are used for the variables γ, r, ǫ. From the simulations

it appears that tightening the error bound ǫ helps in the

presence of noise or spikes. In general a bigger window size

r is seen to perform better but in the presence of noise a
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Fig. 6. Rise in x̂1 and the indicator variable S: square wave discharge
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Fig. 7. Falling y, ỹ. Rising x̂1 and the indicator variable S: sine wave
discharge.

slightly smaller window size is helpful.

A typical application using algorithm 1 would be a device

powered by a Li-ion battery which can operate as long as the

terminal voltage does not fall below 2.5V. Static thresholds

as shown in section V-A can remove a battery from service

too early and provide no pre-warning even when they operate

correctly. Our algorithm detects impending voltage collapses

and hence it can be used for predicting that the terminal

voltage will collapse soon. This is the benefit of using our

algorithm.

It also appears that algorithm 1 can be used with the

terminal voltage y to determine when it is dropping. However

then the question to answer is, when should we look at the

terminal voltage to determine that it is indeed dropping?

If the terminal voltage is fed to algorithm 1 directly, it

may report in the very beginning that the voltage is about

to collapse. This would be consistent because the terminal

voltage of a battery drops linearly over most of its life. Also

sharp drops introduced by spikes in the discharge current can
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Fig. 8. Falling y, ỹ. Rising x̂1 and the indicator variable S: square wave
discharge with measurement noise.

affect the algorithm if used directly with the terminal voltage

y as its input. At this point we wish to draw attention to eqns.

(11) and (19). From (11) we see that y is affected by changes

in the discharge current i, where as ỹ in (19) is not. Even the

effects of u on ỹ are filtered by the dynamics of the simplified

system, which is a low pass filter. So intuitively, our method

adaptively filters out just enough of the disturbance, but

follows the terminal voltage close enough so that essential

information about the shape of y vs. t is captured by the

states x̂1, x̂2.

Our method also suggests an unconventional use of the

UAS theory, namely, to detect system instability under

changing input based on noisy measurement. We believe this

approach may be generalizable to other applications.

VI. CONCLUSION

We have presented a novel method to adaptively detect

when the terminal voltage of a Li-ion battery is about to

collapse using a simplified battery model. As we do not know

the model parameters we use UAS to track the output voltage

curve of a physical Li-ion battery. We have mathematically

justified our method and demonstrated it using simulations.

The method requires measurements of the terminal voltage

and does not require measurements of the discharge current.

We have demonstrated that our method works in the presence

of noise or discharges that are not smooth. Our method is

also less susceptible to false alarms which are of concern to

static threshold based systems. Since we do not require the

details of the actual battery model this method is robust to

temperature variations, ageing effects, changes in loading or

other nonlinear disturbances.
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