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Abstract Underwater gliders are robust ocean sensor platforms characterized by
high reliability and endurance. Due to their relatively low speed, the motion of un-
derwater gliders is strongly affected by ocean currents, which provides data to esti-
mate the depth averaged flow velocity. The glider computerized tomography (Glider
CT) algorithm reconstructs a depth-averaged flow field from the navigation errors
accumulated along the glider trajectories. This paper justifies the convergence of the
Glider CT algorithm as a row action method solving nonlinear equations previously
used for bent-ray ultrasonic CT. The paper also validates the algorithm through ex-
periments where the horizontal motion of underwater gliders under flow is imitated
by mobile robots in a lab setting. Both theoretical analysis and experimental results
suggests the Glider CT algorithm as a promising method for marine operations.

1 Introduction

The underwater glider has found a broad range of applications such as oil field sur-
veys, military operations, and deep-sea and coastal research [10, 13]. The sampling
and monitoring performance of gliders significantly relies on the navigation perfor-
mance of gliders. Due to their relatively low speed, motion of gliders are sensitive to
the ocean current. Therefore, control systems [2, 4, 11], control algorithms [5, 17],
and path planning algorithms [2, 4, 15] have been developed to navigate gliders
through ocean flow with improved performance.

The primary means of localization for underwater gliders is the global position-
ing system (GPS) [7]. However, since GPS signals cannot propagate through sea
water, gliders estimate their underwater positions via dead-reckoning between regu-
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lar surfacing events for GPS updates. Because underwater gliders swim at relatively
low speed, their trajectories are strongly perturbed by ocean currents. Hence, we
can typically observe a difference between the dead-reckoning and actual surfac-
ing positions of a glider. We refer to this difference as the dead-reckoning error.
To mitigate the dead-reckoning error, an underwater glider computes an estimate
of average flow velocity along the trajectory between the last and current surfac-
ing positions, and incorporates the flow estimate into navigation until the following
surfacing event [8]. However, the estimate does not account for the temporal/spatial
variations of the flow field during navigation, and our recent work [2] emphasized
the importance of incorporating such variations into navigation algorithms in field
deployments.

In [2, 3], we proposed efficient methods for real-time ocean current modeling
based on measurements from underwater gliders to improve navigation perfor-
mance. The method in [2] first approximates slowly-varying non-tidal flow from
glider-derived flow estimates and then adds rapidly-varying tidal flow from an tidal
ocean model to the non-tidal flow. However, since the low-frequency flow of the
model is empirically estimated from glider measurements only, its accuracy is lim-
ited to a local area around each glider. The method in [3] approximates ocean cur-
rents using spatial and temporal basis functions. The ocean model constructed there
requires historic data, such as HF-radar measurements or general circulation model
output, to initialize. Once initialized, the model is updated based on the measure-
ments from a group of gliders in real-time and provides ocean current data at higher
resolution than existing approaches.

In our previous work [16], we developed the Glider CT algorithm that recon-
structs the spatial distribution of a depth-averaged flow field with no a priori knowl-
edge of the field. Glider CT is named after computerized tomography (CT), which
reconstructs an image of the internal structure of an object from signals (e.g., X-
rays) that are projected onto the object. A typical setup of CT has the transmitters
and receivers of signals around an object. The transmitters emit signals onto an ob-
ject, and while penetrating the object, the signals attenuate. Then, the remaining
strength of the signals is measured at the receivers. Based on the signal paths and
the measured signal strengths attenuated along the paths, an image of the object is
reconstructed. In a similar way to CT, Glider CT reconstructs a flow field from the
trajectories and dead-reckoning errors of gliders. We draw analogies between sig-
nal paths of CT and glider trajectories of Glider CT and between measured signal
strengths attenuated along the signal paths and dead-reckoning error accumulated
along the glider trajectories.

The structure of the Glider CT algorithm is very similar to a general CT recon-
struction algorithm for bent ultrasound-rays [14]. In this paper, we extend our work
in [16] by analyzing the Glider CT algorithm and providing a convergence proof,
which is applicable to the method in [14] as well. Our algorithm solves a specific
type of nonlinear systems of equations by extending the Kaczmarz method for linear
equations. The Kaczmarz method is one of the row-action methods [1]. Convergence
results have previously been obtained [6, 9] regarding various Kaczmarz-type meth-
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ods for nonlinear equations. The glider CT algorithm can be viewed as one special
case of these methods, and our proof of convergence adds to the collection.

In addition to the convergence analysis, this paper provides experimental results
demonstrating the Glider CT algorithm. We imitate the horizontal motion of under-
water gliders under a flow field using Khepera III robots under a simulated flow
field. We place a light source in a target domain and simulate a flow field based
on light intensity. By applying the dead-reckoning technique of gliders, we esti-
mate the dead-reckoning trajectories of Khepera III robots. We control the motion
of Khepera III robots as if their trajectories are affected by the simulated flow field.
Since the actual underwater trajectories of gliders are unknown because of unavail-
able GPS signals underwater, we treat the trajectories of Khepera III robots as un-
known. Only the starting and ending positions of the robots are used to measure the
dead-reckoning error. Then, we apply the Glider CT algorithm to reconstruct the
simulated flow field. The experimental results show a promising performance of the
algorithm in practical settings.

The rest of the paper is organized as follows. Section 2 provides background
information about underwater glider navigation, and Sect. 3 reviews our prelimiary
work on the Glider CT algorithm. In Sects. 4 and 5, we analyze the details of Glider
CT and prove the convergence of the algorithm, respectively. Section 6 validates the
algorithm through experiments, and Sect. 7 concludes the paper.

2 Background: Underwater Glider Navigation

An underwater glider regularly comes to the surface of water for GPS updates
and data transfer. Between two surfacing events, glider navigation consists of two
phases: surface and subsurface. We denote the actual and dead-reckoning positions
of a glider at time t by r(t) and r̃(t), respectively. We also denote the time associ-
ated with the k-th surfacing and diving events by ts

k and td
k , respectively. Figure 1

illustrates glider navigation from the (k−1)-th diving event to the k-th diving event.
In this paper, we deal with the glider and the flow in the horizontal plane. Sup-

pose we navigate a glider towards a waypoint during one subsurface phase. Before
it dives, the glider computes its heading towards the waypoint. Let us denote the
heading of the glider during the k-th subsurface phase by θk. Then, the glider dives
at r(td

k−1) and navigates underwater until it reaches the waypoint by dead-reckoning,
which estimates the position r̃(t) of the glider using estimates of glider speed, com-
pass heading, and flow velocity. Because of the influence of flow, when the glider
comes back to the surface of water at the k-th surfacing event, the glider experi-
ences the dead-reckoning error, which is the difference between the dead-reckoning
surfacing position r̃(ts

k) and the GPS surfacing position r(ts
k).

Upon the k-th surfacing event, a glider computes an estimate of average flow
velocity along the glider trajectory based on the dead-reckoning error accumulated
over the (k−1)-th subsurface phase. This glider-derived flow estimate can be either
incorporated into navigation to reduce the dead-reckoning error or deactivated so
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Fig. 1 Glider navigation during the (k−1)-th subsurface phase followed by the k-th surface phase.
The figure shows the actual (blue dashed line) and dead-reckoning (blue solid line) trajectories of
a glider. The dead-reckoning error is shown as a red arrow.

that no flow estimate is used in navigation. Let us introduce a switching signal If to
indicate whether the estimated flow is used for navigation or not. The signal If = 1
indicates that the estimated flow is used for navigation and 0, otherwise. Then, the
glider-derived flow estimate at the k-th surfacing event is given by

f̄k = f̄k−1If +
r(ts

k)− r̃(ts
k)

ts
k− td

k−1
, (1)

which combines the previous flow estimate used to navigate over the (k− 1)-th
subsurface phase with the new flow estimate based on the dead-reckoning error
accumulated during the (k−1)-th subsurface phase.

To describe the motion of a glider in the plane, we use a particle model with a
constant through-water speed sh. The position of a glider along the dead-reckoning
trajectory can be predicted by integrating the following equation over time:

˙̃r(t) = sh

[
cosθk
sinθk

]
+ f̄kIf . (2)

However, the real flow experienced by a glider may be different from the glider-
estimated flow. Hence, the actual trajectory between the k-th and (k+1)-th surfacing
events can be described by integrating the following equation over time:

ṙ(t) = sh

[
cosθk
sinθk

]
+ f(r, t) = ˙̃r(t)+ f(r, t)− f̄kIf , (3)

which is usually unknown because of the unknown flow velocity f(r, t).
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3 Preliminary Work: Problem Formulation of Glider CT

The Glider CT problem is formulated from the fact that the dead-reckoning error
accumulated along the glider trajectory is determined by a line integral of the differ-
ence between real flow experienced by the glider and glider-estimated flow incorpo-
rated in navigation. Suppose we deploy m gliders in the ocean and consider glider
navigation over one subsurface phase only. Hereafter, we drop the subscript index
k for the surfacing events and use the subscript index i = {1, · · · ,m} for the glid-
ers for simplicity. After each glider finishes one subsurface phase, we will obtain a
dead-reckoning error di and a glider-derived flow estimate f̄i from each glider. The
dead-reckoning error is accumulated over one subsurface phase, and from Eqs. (2)
and (3), it is given by

di =
∫ ts

i

td
i

(
ṙi(τ)− ˙̃ri(τ)

)
dτ =

∫ ts
i

td
i

f(ri)dτ− f̄ · If
(

ts
i − td

i

)
, (4)

in which td
i and ts

i are the diving and surfacing times of the i-th glider. We introduce
arc-length parameter l of the trajectory, given by

dl = strdt, (5)

in which str is the speed of the glider along its actual trajectory, which satisfies

str(ri) = ‖ṙi‖=
∥∥∥∥sh

[
cosθi
sinθi

]
+ f(ri)

∥∥∥∥ . (6)

Substituting Eqs. (5) and (6) into Eq. (4), we derive

di =
∫

C

1
str(ri)

f(ri)dl− f̄ · If
(

ts
i − td

i

)
. (7)

Since the second term on the right side of the equation is known, for simplicity
we let If = 0 throughout the paper. However, our results apply to the general case
without requiring If = 0.

Let us discretize area A into R× S grids with A(r,s) referring to the (r,s)-th grid.
We denote the flow velocity in each cell by f j, j = {1, · · · ,n = RS}. Indices j, r, and
s satisfy j = (r−1)S+s. For the i-th glider passing through the j-th grid, we denote
the length of the trajectory in the cell by L(i, j). Since we have a constant flow in each
grid, the glider speed along the trajectory is given by

s(i, j)tr (f j) =

∥∥∥∥sh

[
cosθi
sinθi

]
+ f j

∥∥∥∥ .
We assume that the horizontal projection of the glider trajectory is straight and the
heading θi is constant along the trajectory. Then, the discretized version of Eq. (7)
with If = 0 is
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di =
n

∑
j=1

L(i, j)

s(i, j)tr (f j)
f j, i = {1, · · · ,m}.

Now, consider the flow velocity along the x and y directions separately. For i =
{1, · · · ,m}, we can write

dx,i =
n

∑
j=1

L(i, j)

s(i, j)tr (f j)
fx, j, dy,i =

n

∑
j=1

L(i, j)

s(i, j)tr (f j)
fy, j. (8)

By introducing vectors dx = [dx,1,dx,2, · · · ,dx,m]
T , dy = [dy,1,dy,2, · · · ,dy,m]

T , fx =
[ fx,1, fx,2, · · · , fx,n]

T , and fy = [ fy,1, fy,2, · · · , fy,n]
T , we can rewrite Eq. (8) as

dx = L(f)fx, dy = L(f)fy, (9)

where

L(f) =


L(1,1)

s(1,1)tr (f1)
· · · L(1,n)

s(1,n)tr (fn)
...

. . .
...

L(m,1)

s(m,1)
tr (f1)

· · · L(m,n)

s(m,n)
tr (fn)

 , (10)

which is nonlinear and typically underdetermined (m < n). By solving Eq. (9) for fx
and fy, we can estimate flow.

4 Analysis of Glider CT

To solve the underdetermined and nonlinear system of equations in Eq. (9), we
developed the Glider CT algorithm (Algorithm 1) that iteratively updates a solution
to the equations with relaxation parameter λ . Let us omit x and y in the system for
now. Given a nonlinear system

L(f)f = d, (11)

where

L(f) =

 L1(f)
...

Lm(f)

 , f =

 f1
...
fn

 , d =

 d1
...

dm

 ,
the Glider CT algorithm finds a solution to the system equations in an iterative

way. For the k-th iteration, let f(k,0) =
(

f (k,0)1 , f (k,0)2 , · · · , f (k,0)n

)T
be the initial solu-

tion, and let us divide a new solution into m sequences given by

f(k,1) =
(

f (k,1)1 , f (k,1)2 , · · · , f (k,1)n

)T
,

...
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f(k,m) =
(

f (k,m)
1 , f (k,m)

2 , · · · , f (k,m)
n

)T
.

Since the system (11) is underdetermined, there may exist infinitely many solutions.
Suppose given f(k,i−1), we want to update solution f(k,i) to the system in the form of

f(k,i) = f(k,i−1)+αi

(
Li(f(k,i−1))

)T
, i = {1, · · · ,m}, (12)

which updates the solution by adding
(

Li(f(k,i−1))
)T

weighted by αi sequentially
from i = 1 to m for the k-th iteration.

Algorithm 1: Glider CT
Data: Dead-reckoning errors di, i = {1, · · · ,m}

1 Set k = 0. Make an initial guess of the solution f(k+1,0)
x and f(k+1,0)

y .
2 repeat
3 Let k = k+1.
4 for i = 1 to m do
5 Update the solution by

f(k,i)x = f(k,i−1)
x +λ

(k,i−1) dx,i−Li(f(k,i−1))f(k,i−1)
x

‖Li(f(k,i−1))‖2

(
Li(f(k,i−1))

)T
,

f(k,i)y = f(k,i−1)
y +λ

(k,i−1) dy,i−Li(f(k,i−1))f(k,i−1)
y

‖Li(f(k,i−1))‖2

(
Li(f(k,i−1))

)T
.

6 end
7 Let f(k+1,0)

x = f(k,K)
x and f(k+1,0)

y = f(k,K)
y .

8 until a stopping condition is met

Let us define a residual term

r(k,i−1)(f) = Li(f(k,i−1))f−di. (13)

To find αi in Eq. (12), we let r(k,i−1)(f) = 0 at f(k,i) and substitute Eq. (12) into Eq.
(13), which yields

Li(f(k,i−1))f(k,i−1)+Li(f(k,i−1))
(

Li(f(k,i−1))
)T

αi−di = 0.

Assuming LiLT
i 6= 0, the equation has the unique solution

αi =
di−Li(f(k,i−1))f(k,i−1)

Li(f(k,i−1))
(
Li(f(k,i−1))

)T =
di−Li(f(k,i−1))f(k,i−1)

‖Li(f(k,i−1))‖2
. (14)

Substituting Eq. (14) into Eq. (12), we have
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f(k,i) = f(k,i−1)+
di−Li(f(k,i−1))f(k,i−1)

‖Li(f(k,i−1))‖2

(
Li(f(k,i−1))

)T
, (15)

which is used to update the solution in Algorithm 1 without relaxation parameter
λ (k,i−1). For simplicity, we assume λ (k,i−1) = 1 here. Once we have f(k,m), we obtain
the initial sequence for the (k+1)-th iteration by f(k+1,0) = f(k,m).

5 The Convergence of the Glider CT Algorithm

Given a nonlinear system (11), we claim that the solution to the system equa-
tions derived from the Glider CT algorithm f(k,i) =

(
f (k,i)1 , f (k,i)2 , · · · , f (k,i)n

)
, k =

{1,2, · · ·}, i = {1, · · · ,m} converges to the true solution f∗ = ( f ∗1 , f ∗2 , · · · , f ∗n ). Sup-
pose there exists a ball B(f∗,δ ) around f∗ with radius δ > 0 where the following
two assumptions hold for all f ∈B(f∗,δ ):

Assumption 1. Li(f) is Lipschitz continuous for all i with the largest Lipschitz con-
stant γ , i.e., given Lipschitz constant γi > 0 for Li(f), i = {1, · · · ,m}, γ = maxi γi.

Assumption 2. There exists ε > 0 that the following are satisfied:

1) λmax
(
I−L+

i (f)Li(f)
)
< 1− ε for all i, where λmax(·) is the largest eigenvalue,

2)
γ‖f∗‖
‖Li(f)‖

<
√

ε for all i.

Let us define L+
i (f) =

Li(f)T

‖Li(f)‖2 , referred to as the pseudoinverse of Li(f) in this paper.

Lemma 1. L+
i (f) satisfies the following four conditions for the Moore-Penrose

pseudoinverse [12]:

1. Li(f)L+
i (f)Li(f) = Li(f)

2. L+
i (f)Li(f)L+

i (f) = L+
i (f)

3. (Li(f)L+
i (f))

T = Li(f)L+
i (f)

4. (L+
i (f)Li(f))T = L+

i (f)Li(f)

Proof. By simply substituting L+
i (f) into the above four conditions, we can show

that Lemma 1 holds. ut

Let us denote the Euclidean distance between p and q by dist(p,q). In the following
theorem, we prove the convergence of the Glider CT algorithm.

Theorem 1. Suppose there exists a ball B(f∗,δ ) around f∗ with radius δ > 0 where
Assumptions 1 and 2 hold. Starting from any initial point f(1,0) within the ball, e.g.,
dist(f∗, f(1,0))< δ , the sequence f(k,i) generated by Algorithm 1 converges to f∗.
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Proof. Let us define an error term e(k,i) = f(k,i)− f∗. By subtracting f∗ from the both
sides of Eq. (15) and substituting L+

i (f) and r(k,i−1)(f(k,i−1)), we have

e(k,i) = e(k,i−1)−L+
i (f

(k,i−1))r(k,i−1)(f(k,i−1)), i = {1, · · · ,m},

The square of the Euclidean norm of the error is〈
e(k,i),e(k,i)

〉
=
〈

e(k,i−1),e(k,i−1)
〉
−2
〈

L+
i (f

(k,i−1))r(k,i−1)(f(k,i−1)),e(k,i−1)
〉

+
〈

L+
i (f

(k,i−1))r(k,i−1)(f(k,i−1)),L+
i (f

(k,i−1))r(k,i−1)(f(k,i−1))
〉
. (16)

Since di = Li(f∗)f∗, we can express residual r(k,i−1)(f(k,i−1)) as

r(k,i−1)(f(k,i−1)) = Li(f(k,i−1))f(k,i−1)−di

= Li(f(k,i−1))f(k,i−1)−Li(f∗)f∗

= Li(f(k,i−1))f(k,i−1)−Li(f(k,i−1))f∗+Li(f(k,i−1))f∗−Li(f∗)f∗

= Li(f(k,i−1))e(k,i−1)+h(k,i−1)f∗, (17)

where we define h(k,i−1) = Li(f(k,i−1))−Li(f∗). By substituting r(k,i−1)(f(k,i−1)) in
Eq. (17) into Eq. (16), we have〈

e(k,i),e(k,i)
〉
=
〈

e(k,i−1),e(k,i−1)
〉
−2
〈

L+
i (f

(k,i−1))h(k,i−1)f∗,e(k,i−1)
〉

−2
〈

L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1),e(k,i−1)
〉

+
〈

L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1),L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1)
〉

+2
〈

L+
i (f

(k,i−1))h(k,i−1)f∗,L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1)
〉

+
〈

L+
i (f

(k,i−1))h(k,i−1)f∗,L+
i (f

(k,i−1))h(k,i−1)f∗
〉
.

(18)

By the property of the inner product and Lemma 1, the fourth and fifth terms on the
right side of Eq. (18) become〈

L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1),L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1)
〉

=

〈(
L+

i (f
(k,i−1))Li(f(k,i−1))

)T
L+

i (f
(k,i−1))Li(f(k,i−1))e(k,i−1),e(k,i−1)

〉
=
〈

L+
i (f

(k,i−1))Li(f(k,i−1))e(k,i−1),e(k,i−1)
〉

(19)〈
L+

i (f
(k,i−1))h(k,i−1)f∗,L+

i (f
(k,i−1))Li(f(k,i−1))e(k,i−1)

〉
=

〈(
L+

i (f
(k,i−1))Li(f(k,i−1))

)T
L+

i (f
(k,i−1))h(k,i−1)f∗,e(k,i−1)

〉
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=
〈

L+
i (f

(k,i−1))h(k,i−1)f∗,e(k,i−1)
〉
. (20)

By substituting Eqs. (19) and (20) into Eq. (18), we have〈
e(k,i),e(k,i)

〉
=
〈(

I−L+
i (f

(k,i−1))Li(f(k,i−1))
)

e(k,i−1),e(k,i−1)
〉

+
〈

L+
i (f

(k,i−1))h(k,i−1)f∗,L+
i (f

(k,i−1))h(k,i−1)f∗
〉
.

(21)

Let us define 〈x,y〉G = 〈Gx,y〉 as an inner product of x,y ∈ Rn induced by matrix G
and ‖x‖G =

√
〈x,x〉G as a norm of x ∈ Rn induced by 〈·, ·〉G. Then, Eq. (21) can be

rewritten as

‖e(k,i)‖2 = ‖e(k,i−1)‖2
(I−L+

i (f(k,i−1))Li(f(k,i−1))) +‖L
+
i (f

(k,i−1))h(k,i−1)f∗‖2.

Since Li(f) is Lipschitz continuous,

‖h(k,i−1)‖= ‖Li(f(k,i−1))−Li(f∗)‖ ≤ γ‖f(k,i−1)− f∗‖= γ‖e(k,i−1)‖,

in which γ is the Lipschitz constant in Assumption 1. Then, we have

‖e(k,i)‖2 ≤ λmax

(
I−L+

i (f
(k,i−1))Li(f(k,i−1))

)
‖e(k,i−1)‖2

+ γ
2‖L+

i (f
(k,i−1))‖2‖e(k,i−1)‖2‖f∗‖2.

Since L+
i (f

(k,i−1)) = Li(f(k,i−1))T

‖Li(f(k,i−1))‖2 , ‖L+
i (f

(k,i−1))‖2 = 1
‖Li(f(k,i−1))‖2 , which gives

‖e(k,i)‖2 ≤
(

λmax

(
I−L+

i (f
(k,i−1))Li(f(k,i−1))

)
+

γ2‖f∗‖2

‖Li(f(k,i−1))‖2

)
‖e(k,i−1)‖2

= ν
(k,i−1)‖e(k,i−1)‖2 k = {1,2, · · ·}, i = {1, · · · ,m}, (22)

where e(k,i) = f∗ − f(k,i). Since we set the initial solution for each iteration to be
the last sequence of the solution from the previous iteration, e.g., f(k+1,0) = f(k,m)

for the (k+1)-th iteration, we can express Eq. (22) as ‖es‖2 ≤ νs−1‖es−1‖2, where
s = (k− 1)m+ i corresponds to (k, i). Since f(1,0) = f0 ∈B(f∗,δ ) where Assump-
tions 1 and 2 hold, ν0 < 1, and therefore f1 ∈B(f∗,δ ). This applies to the following
iterations sequentially, which leads to ν1,ν2, · · ·< 1 and f2, f3, · · · ∈B(f∗,δ ). There-
fore, starting from f(1,0) ∈B(f∗,δ ), we have ν(k,i) < 1 and f(k,i) ∈B(f∗,δ ) for all k
and i. Hence, e(k,i)→ 0, and f(k,i)→ f∗. ut
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6 Experimental Results

We validate the Glider CT algorithm through experiments using Khepera III robots.
The experimental setup is shown in Fig. 2(a). The starting and ending positions of
robots are identified by a camera installed on top of the experimental domain. Even
though the actual trajectory of a robot is observable through the camera, we treat
the nominal trajectory of a robot as unknown to us since the underwater trajectory
of a glider is unknown in glider operations. To construct a flow field, we place a
light source at the left bottom corner (x,y) = (0,0) of a domain and simulate a 2-D
flow field such that all the flow vectors are in the direction of [ 1√

2
, 1√

2
]T and their

magnitudes are scaled by the light intensity throughout the domain shown in Fig.
2(b). The intensity of ambient light around Khepera III robots is measured by 9 IR
sensors located on the side of each robot. The measurements of the light intensity
range from 0 to Imax = 4096, where a lower value indicates higher light intensity.

(a) Four Khepera III robots in a light field.
x (m)

y
 (

m
)

 

 

0.4 0.6 0.8 1

0.4

0.6

0.8

1

0.028

0.0462

0.0644

0.0826

0.101

0.119

(b) The simulated true flow field of the domain.

Fig. 2 Experimental setup with Khepera III robots in a light field. Four Khepera III robots are
differentiated using letters ‘G’,‘T’,‘O’, and ‘N’. National Instruments LabVIEW identifies the po-
sitions (the colored rectangle around each robot) and headings (the line attached to each robot) of
the robots. A light source is located at the left bottom corner in (a) to simulate the light field in (b).

The horizontal motion of underwater gliders is imitated using Khepera III robots
under a simluated flow field. Given an initial heading θ of a robot, its dead-
reckoning trajectory is computed by integrating the dead-reckoning motion of glid-
ers in Eq. (2). As discussed in Sect. 3, we set If = 0. The nominal motion of a
Khepera III robot is implemented following Algorithm 2. At step k, each robot first
measures the intensity of ambient light from the nine IR sensors at the current posi-
tions of the robots and computes the mean of the sensor measurements. To make a
lower mean value of the sensor measurements represent a lower light intensity, we
subtract the mean of the measurements from Imax and compute a ratio of the mean
light intensity around each robot. Then, we obtain the magnitude of the simulated
flow at the current positions of the robots by scaling the ratio with scaling factor c.
The simulated flow field is constructed by multiplying the magnitude by direction
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vector [ 1√
2
, 1√

2
]T . We compute the motion ṙ = [ṙx, ṙy]

T of a Khepera III robot under
the simulated flow using Eq. (3). To implement motion ṙ in a Khepera III robot, we
decompose ṙ into its magnitude and angle, i.e., ṙ = ‖ṙ‖∠ṙ. We define the speed of
a robot and the change of its heading that are affected by the simulated flow field
as sk

h = ‖ṙ‖ and ∆θk = ∠ṙ = arctan(ṙy/ṙx), respectively. Then, with time step size
∆ t, we rotate each robot by ∆θk∆ t and move them forward by sk

h∆ t. We repeat
this process until the length of the dead-reckoning trajectory of each robot reaches
a predetermined travel distance D (i.e., ksh∆ t < D). For our experiment, we used
c = 3

√
2

10 , ∆ t = 0.1, sh = 0.3m/s, and D = 1.4m.

Algorithm 2: Nominal motion of a Khepera III robot
Data: Initial heading θ0 of the robot

1 Set k = 0.
2 repeat
3 Let k = k+1.
4 for i = 1 to 9 do
5 Ii← the intensity of ambient light from the i-th IR sensor
6 end

7 I =
∑i Ii

9

8 f =
c(Imax− I)

Imax

[
1√
2

1√
2

]
9 ṙ = sh

[
cos(θ0)
sin(θ0)

]
+ f

10 ∆θk = arctan
(

ṙy

ṙx

)
11 sk

h = ‖ṙ‖
12 Rotate the robot by ∆θk∆ t
13 Move the robot forward by sk

h∆ t

14 until k <
D

sh∆ t

We ran multiple sets of experiment using four Khepera III robots and chose ten
navigation data sets of the robots – five from the right side of the domain to the
left and five from the top to the bottom – shown in Fig. 3(a). Given the collected
navigation data sets, we reconstructed the simulated flow field from the trajectories
and dead-reckoning errors of the robots by running the Glider CT algorithm (Algo-
rithm 1). Because of the unknown trajectories of the robots, we assume the actual
robot trajectories are straight lines between their starting and final positions. For
the algorithm, the true field is unknown. We chose λ (k,i) = 0.01 for all k, i where
k = {1,2, · · ·}, i = {1, · · · ,m}, and for the k-th iteration, the iteration ended when
both ‖f(k,m)

x − f(k,0)x ‖ and ‖f(k,m)
y − f(k,0)y ‖ are less than 10−3. Figure 3(b) shows the

reconstructed flow freconst. Compared to the true field ftrue in Fig. 2(b), the recon-
structed field suffers from noise. The magnitude of flow in the true field ranges
from 0.028 to 0.119 m/s, and that in the reconstructed field ranges from 0.0212
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to 0.0725 m/s. We compute the error between the true and reconstructed fields
by e = ftrue− freconst. The root-mean-square errors in the x and y components are
erms

x = 0.0182m/s and erms
y = 0.0169m/s, respectively. We analyze that the error is

partially due to the limitation of motor control for the differential wheels of Khepera
III robots.The motor is controlled by pulse signals, and one pulse signal sent to the
motors of a Khepera III robot rotates the robot by 0.06°. That is, the rotation angle
is a multiple of 0.06°. Accumulated errors along the trajectories by the limitation of
motor control may significantly affect the reconstruction of the field.
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0.8

1

1.2

1.4

1.6
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m
)
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Real traj.
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(a) Trajectories of Khepera III robots.
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0.0315
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(b) The reconstructed flow field.

Fig. 3 Experimental results. (a) The green circles, red stars, and cyan triangles represent the start-
ing positions, target positions, and ending positions of the robots, respectively. Solid lines con-
necting starting positions and ending positions are real trajectories, and dashed lines connecting
starting positions and target positions are dead-reckoning trajectories. (b) The 4× 4 flow field is
reconstructed from navigation data of Khepera III robots shown in (a).

7 Conclusion

Glider CT reconstructs a depth-averaged flow field from the dead-reckoning errors
of gliders. The Glider CT algorithm is a row-action iterative numerical method that
converges to the solution of a set of nonlinear system equations sequentially. This
paper proved the convergence of the Glider CT algorithm and demonstrated the
effectiveness of the algorithm through experiments using Khepera III robots that
imitate the horizontal motion of underwater gliders under a simulated flow field.
The experimental results suggest that the Glider CT algorithm may be applied to
real gliders in future ocean sensing deployments.
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